
PLEASE ANSWER ALL QUESTIONS.
PLEASE EXPLAIN YOUR ANSWERS.

1. Consider the following game G.

Player 1

Player 2
L C R

U 6, 3 3, 0 0, 1
M 5, 4 1, 7 4, 3
D 2, 5 5, 7 0, 0

(a) Solve the game by iterated elimination of strictly dominated strategies. If you get a
unique solution, indicate this. If your solution is not unique, write up the reduced
game where you have eliminated the strictly dominated strategies.
Solution: For player 2, R is strictly dominated by L. After eliminating R, M is
strictly dominated by U for player 1. There are no more strictly dominated strategies.
This leaves us with the following game.

Player 1

Player 2
L C

U 6, 3 3, 0
D 2, 5 5, 7

(b) Find all the pure and mixed-strategy Nash Equilibria.1

Solution: Since a strictly dominated strategy will never be played in equilibrium,
we can just solve the 2x2 game obtained in the previous question.

Player 1

Player 2
L C

U 6,3 3, 0
D 2, 5 5,7

The pure-strategy NE are {(U,L), (D,C)}.
Suppose player 1 plays U with probability p and player 2 plays L with probability q.
Then player 1 is indifferent between playing U and D whenever

q(6) + (1− q)(3) = q(2) + (1− q)(5).

This solves for q = 1/3. Conversely, player 2 is indifferent between playing L and C
whenever

p(3) + (1− p)(5) = p(0) + (1− p)(7).

This solves for p = 2/5. Thus, the mixed-strategy NE using the notation in the
footnote is (p∗1, p∗2, p∗3; q∗1, q∗2, q∗3) = (2

5 , 0,
3
5 ; 1

3 ,
2
3 , 0).

(c) It has been argued that randomization in decision making lacks ‘behavioral support’.
Give one (and just one) example of a different interpretation of mixed strategies, that
does not rely on players actually randomizing.
Solution: The interpretation could for instance be that of a large population of
players, all of whom play pure strategies. However, if there is random matching
and players cannot observe the actual strategy of the other player, this is (in our
simple setting) as if they were playing against a player with a mixed strategy. Other
interpretations are also accepted.

1For the mixed-strategy equilibria, you can assume that player 1 plays U with probability p1, M with proba-
bility p2 and D with probability 1 − p1 − p2. Similarly, assume that player 2 plays L with probability q1, C with
probability q2 and R with probability 1 − q1 − q2.
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(d) Suppose we repeat the game twice. Let the new game be denoted G(2). Find a
Subgame-perfect Nash Equilibrium ofG(2) and write it up formally. (Any equilibrium
will do, you do NOT have to find all equilibria.)
Solution: Any SPNE will do. For instance, playing (U,L) in all subgames. This is
a SPNE since a NE is played in every subgame. It is important to mention this in
the analysis.

2. Two tech entrepreneurs have made 1 dollar from selling a new app and need to decide how
to allocate the gains. If no agreement is reached, neither entrepreneur gets anything. Let
x1 and x2 be the amounts that entrepreneur 1 and 2 get in the negotiation. Their utilities
are:

u1(x1) = 4x1

u2(x2) = 2
√
x2.

(a) Can the axioms Pareto efficiency (PAR), Symmetry (SYM) and Invariance to equiv-
alent payoff representations (INV) be used to conclude that the Nash Bargaining
Solution must satisfy v∗1 = v∗2? Explain briefly.
Solution: No. In this example, the payoff representations of the two players are not
equivalent, since player 2’s payoff function is not an affine transformation of player
1’s payoff function. Therefore, the first three axioms are not sufficient to solve the
problem.

(b) Find the Nash Bargaining Solution. What are the allocations?
Solution: The disagreement allocation is D = (0, 0), which corresponds to d = (0, 0).
We must solve the program maxv1,v2(v1− d1)(v2− d2) subject to (v1, v2) ∈ U . Doing
the transformations, we get x1 = v1

4 and x2 = v2
2
4 . The solution must be efficient,

so we can substitute v1
4 + v2

2
4 = 1, i.e. v1 + v2

2 = 4, into the problem, along with
d1 = d2 = 0. Thus: (v1 − d1)(v2 − d2) = v1v2 = (4 − v2

2)v2. Take the first-order
condition: 4 − 3v2

2 = 0. This gives v∗2 = 2√
3 . Then v∗1 = 4 − ( 2√

3)2 = 8
3 . This

corresponds to the allocations x∗1 = 8
12 and x∗2 = 4

12 .
(c) Now, suppose the entrepreneurs have signed a contract before they started the ven-

ture, guaranteeing that in case of disagreement, entrepreneur 1 gets to keep 0.5 dollar
whereas entrepreneur 2 gets nothing. Find the Nash Bargaining Solution. What are
the allocations?
Solution: The disagreement allocation isD = (1

2 , 0), which corresponds to d = (2, 0).
We must solve the program maxv1,v2(v1− d1)(v2− d2) subject to (v1, v2) ∈ U . Doing
the transformations, we get x1 = v1

4 and x2 = v2
2
4 . The solution must be efficient, so

we can substitute v1
4 + v2

2
4 = 1, i.e. v1 + v2

2 = 4 into the problem, along with d1 = 0.5
and d2 = 0. Thus: (v1− d1)(v2− d2) = (v1− 2)v2 = (4− v2

2 − 2)v2 = (2− v2
2)v2. Take

the first-order condition: 2−3v2
2 = 0. This gives v∗2 =

√
2
3 . Then v

∗
1 = 4−(

√
2
3)2 = 10

3 .
This corresponds to the allocations x∗1 = 10

12 and x∗2 = 2
12 .

(d) Compare the answers in (b) and (c). If the allocations are the same, explain why this
is the case. If they are different, explain why this is the case.
Solution: Player 1 gets a better allocation in the second problem, because his dis-
agreement point has improved. Intuitively speaking, the Nash solution gives each
player their disagreement payoffs plus an equitable split of the surplus from bargain-
ing.
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3. Consider the entry game represented in Figure 1, in which the incumbent can be weak
(i = w) or strong (i = s). Here, the incumbent does not know his own type, but the
outsider does.2 You can think of this as a probability θ that the outsider has found the
incumbent’s ‘weak spot’. Suppose θ ∈ (0, 1).
The timing of the game is as follows. The outsider must first decide whether to enter (Ei)
or not (Ni). (Here the i indicates the type of the incumbent, since the outsider conditions
his choice on the incumbent’s type.) If he doesn’t enter, we assume that the game ends.
If he enters, on the other hand, the incumbent can choose either to fight (F ) or acquiesce
(A). If he acquiesces, the game ends. If he fights, the game continues. In this case, the
outsider must decide whether to stay (Si) or leave (Li). (Again, i = w, s.)
Suppose the incumbent’s beliefs in his information set attach probability p to him being
the weak type. The payoffs are as indicated in Figure 1. The first payoff is that of the
incumbent, the second is that of the outsider.

(a) Indicate how many strategies each player has, and write up one such strategy for each
player. Is this a game of imperfect or incomplete information?
Solution: The incumbent has two strategies, e.g. F . The outsider has 24 = 16
strategies, e.g. (Ew, Ns, Sw, Ls). The game is of incomplete information.

(b) Show that for certain values of θ, there is an equilibrium in which the outsider always
enters (plays Ei for i = w, s) and the incumbent acquiesces (plays A). Be careful to
specify how the equilibrium depends on p and θ. (Hint: Use Bayes’ Rule to calculate
p given θ and given that the outsider always enters.)
Solution: Starting from the end of the game, it is always optimal for the outsider
to play Sw and Ls. Therefore, given beliefs p, the incumbent’s expected payoff from
playing F is p(0) + (1 − p)(3) = 3(1 − p) whereas his expected payoff from playing
A is p(2) + (1 − p)(1) = 1 + p. Thus, it is optimal to play F whenever 3(1 − p) ≥
1 + p⇔ p ≤ 1

2 . Thus, in any equilibrium the incumbent’s strategy must be

sI(p) =


F if p ≤ 1

2
A if p ≥ 1

2 .

Regardless of the type of the incumbent, the outsider will only enter if the incumbent
plays A. Suppose the outsider always enters. Then Bayes’ Rule implies p = θ. Thus,
an equilibrium of this type exists only if θ ≥ 1

2 .
Thus, the equilibrium is (A,EwEsSwLs; p = θ) for θ ≥ 1

2 .
(c) Show that there is also an equilibrium in which the outsider never enters (he plays

Ni for i = w, s). Be careful when you write up the equilibrium to specify p, and how
the equilibrium depends on θ. (Hint: In this case, Bayes’ Rule does not apply to p.)
Solution: Now, the incumbent’s information set is off the equilibrium path. There-
fore, p is unrestricted by Bayes’ Rule. The outsider’s strategy in his last information
sets is the same as before. So is the strategy of the incumbent, conditional on p. In
order for it to be optimal for the outsider never to enter, we need that the incumbent
plays F . This will be optimal if p ≤ 1

2 .
Thus, the equilibrium is (F,NwNsSwLs; p ≤ 1

2) for all θ.
(d) Consider the equilibrium in (c) where the outsider never enters. Does it satisfy SR5

(‘strict domination’)?
Solution: Both outsider types can potentially do better from entering (if the incum-
bent acquiesces) and therefore we cannot apply SR5.

2Notice that this is the ‘opposite’ of the entry game you saw in the lectures.
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Figure 1: Entry game
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4. Consider a first-price sealed bid auction with two bidders, who have valuations v1 and v2,
respectively. For i = 1, 2, these values are distributed independently uniformly with

vi ∼ u(1, 2).

Thus, the values are private.

(a) Suppose player j uses the strategy bj(vj) = cvj + d. For i 6= j, show that conditional
on this strategy, the probability that i wins when he bids bi is

P(i wins|bi) = bi − d− c
c

,

whenever c+ d ≤ bi ≤ 2c+ d.

Solution: Notice that P(bi > bj(vj)) = P
(

bi−d
c > vj

)
=

bi−d

c
−1

2−1 = bi−d−c
c whenever

c+ d ≤ bi ≤ 2c+ d. Outside the bounds, the probability is 0 or 1, respectively.
(b) Show that there is a symmetric Bayesian Nash Equilibrium in linear strategies:

bi(vi) = cvi + d, i = 1, 2. Find c and d.
Solution. We follow the procedure seen in the lecture. Assume that bidder j follows
his proposed equilibrium strategy bj(vj) = cvj +d. Then calculate the expected payoff
to i from bidding bi:

E[ui(bi, vi)] = P(i wins|bi)(vi − bi)
= P(bi > bj(vj))(vi − bi)
= P(bi > cvj + d)(vi − bi)

= P
(
bi − d
c

> vj

)
(vi − bi)

Thus
E[ui(bi, vi)] = bi − d− c

c
(vi − bi).
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Take the first-order condition

1
c

[(vi − 2bi) + (d+ c)] = 0.

Easy to check SOC. Hence, best response is

bi(vi) = 1
2vi + 1

2(d+ c).

Therefore, c∗ = 1
2 and d∗ = 1

2(d∗ + c) = 1
2(d∗ + 1

2), which solves for d∗ = 1
2 . I.e.

b∗i (vi) = 1
2vi + 1

2 .

6


